Quantum m*n-matrices and q-deformed Binet-Cauchy formula

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L1243
(http://iopscience.iop.org/0305-4470/24/21/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 13:58

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Quantum $\boldsymbol{m} \times \boldsymbol{n}$-matrices and \boldsymbol{q}-deformed Binet-Cauchy formula

SA Merkulov
Theoretical Problems Department, USSR Academy of Sciences, ul. Vesnina 12, Moscow 121002, USSR

Abstract

Quantum multiplicative matrices of size $m \times n$ are introduced and studied. The q-generalization of the Binet-Cauchy formula is found.

Recently there has been growing interest [1-5], both from the physical as well as the mathematical point of view, in studying quantum 'groups', 'spaces' and algebras. Much attention has been paid to square quantum multiplicative matrices which are the key objects in the quantum group theory.

In this letter we define and investigate quantum multiplicative matrices of size $m \times n$. In particular, we find the q-generalization of the classical Binet-Cauchy formula, which expresses the quantum determinant of the matrix product $\mathbf{U} \circ \mathbf{V}$ of a quantum matrix U of size $m \times n$ by a quantum matrix \mathbf{V} of size $n \times m$ in terms of m th order q-minors of \mathbf{U} and \mathbf{V}.

Following [1], we first make a brief review of definitions of quantum groups $M_{q}(n)$ of matrices of size $n \times n$ and the corresponding quantum planes $A_{q}^{n \mid \theta}$ and $A_{q}^{\rho \mid n}$.

The coordinate ring $A_{q}(n)$ of the manifold $M_{q}(n)$ of quantum $n \times n$-matrices is the polynomial \mathbb{C}-algebra $\mathbb{C}\left\langle z_{i}^{k}, i, k=1, \ldots, n\right\rangle$ generated by n^{2} symbols z_{i}^{k} subject to the following relations

$$
\begin{array}{ll}
z_{i}^{k} z_{i}^{l}=q z_{i}^{l} z_{i}^{k} & \text { for } k<l \\
z_{i}^{k} z_{j}^{k}=q z_{j}^{k} z_{i}^{k} & \text { for } i<j \\
z_{i}^{k} z_{j}^{l}-z_{j}^{\prime} z_{i}^{k}=\left(q-q^{-1}\right) z_{i}^{\prime} z_{j}^{k} & \text { for } i<j, k<l \tag{1}\\
z_{i}^{k} z_{j}^{l}=z_{j}^{l} z_{i}^{k} & \text { for } i<j, k>l .
\end{array}
$$

The quantum determinant of the matrix z_{i}^{j} generating $A_{q}(n)$ is defined by

$$
\begin{align*}
\operatorname{det}_{q}\left(z_{i}^{j}\right) & =\sum_{\sigma \in S_{n}}(-q)^{\prime(\sigma)} z_{1}^{\sigma(1)} z_{2}^{\sigma(2)} \ldots z_{n}^{\sigma(n)} \\
& =\sum_{\sigma \in S_{n}}(-q)^{\prime(\sigma)} z_{\sigma(1)}^{1} z_{\sigma(2)}^{2} \ldots z_{\sigma(n)}^{n} \tag{2}
\end{align*}
$$

where S_{n} is the permutation group of the set $\{1,2, \ldots, n\}$ and, for each $\sigma \in S_{n}, l(\sigma)$ denotes the number of pairs (i, j) with $1 \leqslant i<j \leqslant n$ and $\sigma(i)>\sigma(j)$.

According to Manin [5], the quantum group $M_{q}(n)$ may be described as an automorphism 'group' of quantum planes $A_{q}^{n \mid 0}$ and $A_{q}^{0 \mid n}$ which are polynomial \mathbb{C} algebras, $A_{q}^{n i 0}=\mathbb{C}\left\langle x^{i}, i=1, \ldots, n\right\rangle$ and $A_{q}^{i \mid n}=\mathbb{C}\left\langle\xi^{j}, j=1, \ldots, n\right\rangle$, generated correspondingly by symbols x^{i} and ξ^{j} with the commutation rules

$$
\begin{align*}
& x^{i} x^{j}=q x^{j} x^{i} \quad \text { for } i<j \tag{3}\\
& \left(\xi^{i}\right)^{2}=0 \quad \xi^{i} \xi^{j}=-q^{-1} \xi^{j} \xi^{i} \quad \text { for } i<j . \tag{4}
\end{align*}
$$

More exactly, there exist algebra morphisms

$$
\delta_{n}: A_{q}^{n \mid 0} \rightarrow A_{q}(n) \otimes A_{q}^{n \mid 0}, \tilde{\delta}_{n}: A_{q}^{0 \mid n} \rightarrow A_{q}(n) \otimes A_{q}^{0 \mid n}
$$

such that

$$
\delta_{n}\left(x^{i}\right)=\sum_{j=1}^{n} z_{j}^{i} \otimes x^{j} \quad \tilde{\delta}_{n}\left(\xi^{i}\right)=\sum_{j=1}^{n} z_{j}^{i} \otimes \xi^{j}
$$

The co-action $\tilde{\delta_{n}}$ applied to the monomial $\xi^{1} \ldots \xi^{n}$ gives the formula $[1,5]$

$$
\tilde{\delta}_{n}\left(\xi_{1} \ldots \xi_{n}\right)=\operatorname{Det}_{q}\left(z_{j}^{i}\right) \otimes \xi^{1} \ldots \xi^{n} .
$$

Analogously, applying $\tilde{\delta}_{n}$ to the monomial $\xi^{i_{1}} \ldots \xi^{i_{n}}$ one finds

$$
\begin{align*}
\tilde{\delta}_{n}\left(\xi^{i_{1}} \ldots \xi^{i_{m}}\right) & =\sum_{j_{1}, \ldots j_{n}} z_{j_{1}}^{i_{1}} \ldots z_{j_{n}}^{i_{n}} \otimes \xi^{j_{1}} \ldots \xi^{j_{n}} \\
& =\sum_{\sigma \in S_{n}}(-q)^{l(\sigma)} z_{\sigma(1)}^{i_{1}} \ldots z_{\tilde{\sigma}(n)}^{i_{n}} \otimes \xi^{1} \ldots \xi^{n} \tag{5}
\end{align*}
$$

If two or more indices i_{1}, \ldots, i_{n} coincide, the left-hand side of (5) vanishes. Thus we obtain the formula

$$
\sum_{\sigma \in S_{n}}(-q)^{l(\sigma)} z_{\sigma(1)}^{i_{1}} \ldots z_{\tilde{\sigma}_{(n)}}^{i_{n}}=0 \quad \text { if } i_{k}=i_{l} \text { for some } k, l \in\{1, \ldots, n\}
$$

If all indices i_{1}, \ldots, i_{n} are distinct, we obtain from (5) the identity

$$
\begin{equation*}
\sum_{\sigma \in S_{n}}(-q)^{I(\sigma)} z_{\sigma(1)}^{i_{1}} \ldots z_{\sigma(n)}^{i_{n}}=(-q)^{l\left[i_{1} \ldots i_{n}\right]} \operatorname{Det}_{q}\left(z_{i}^{j}\right) \tag{6}
\end{equation*}
$$

where $l\left[i_{1} \ldots i_{n}\right]$ denotes the number of pairs $\left(i_{k}, i_{i}\right)$ in the ordered set $\left\{i_{1}, \ldots, i_{n}\right\}$ with $k<l$ and $i_{k}>i_{i}$.

Manin's interpretation of $M_{q}(n)$ suggests to define the space $M_{q}(m, n)$ of quantum matrices of size $m \times n$ as the 'space' of algebra morphism from quantum planes $A_{q}^{m \mid 0}$ and $\boldsymbol{A}_{q}^{0 \mid m}$ to, respectively, quantum planes $A_{q}^{n \mid 0}$ and $\boldsymbol{A}_{q}^{0 \mid n}$.

Thus we introduce symbols U_{i}^{α} (Latin indices take values $1, \ldots, n$, while Greek ones take values $1, \ldots, m$) and consider the polynomial \mathbb{C}-algebra $A_{q}(m, n)=\mathbb{C}<$ $\left.U_{i}^{\alpha}, 1 \leqslant \alpha \leqslant m, 1 \leqslant i \leqslant n\right\rangle$. Let us find commutation relations for U_{i}^{α} that ensure the existence of algebra morphisms

$$
\delta_{m, n}: A_{q}^{m \mid 0} \rightarrow A_{q}(m, n) \otimes A_{q}^{n \mid 0} \quad \tilde{\delta}_{m, n}: A_{q}^{0 \mid m} \rightarrow A_{q}(m, n) \otimes A_{q}^{n \mid 0}
$$

such that

$$
\delta_{m, n}\left(y^{\alpha}\right)=\sum_{i=1}^{n} U_{i}^{\alpha} \otimes x^{i} \quad \tilde{\delta}_{m, n}\left(\zeta^{\alpha}\right)=\sum_{i=1}^{n} U_{i}^{\alpha} \otimes \xi^{i}
$$

where $y^{\alpha}, \zeta^{\beta}, x^{i}$ and ξ^{j} are canonical generators of $A_{q}^{m \mid 0}, A_{q}^{0 \mid m}, A_{q}^{n \mid 0}$ and $A_{q}^{0 \mid n}$ respectively.
Simple calculations give the following result: the desired morphisms $\delta_{m, n}$ and $\tilde{\delta}_{m, n}$ exist provided symbols U_{i}^{α} satisfy the commutation relations

$$
\begin{array}{ll}
U_{i}^{\alpha} U_{i}^{\beta}=q U_{i}^{\beta} U_{i}^{\alpha} & \text { for } \alpha<\beta \\
U_{i}^{\alpha} U_{j}^{\alpha}=q U_{j}^{\alpha} U_{i}^{\alpha} & \text { for } i<j \\
U_{i}^{\alpha} U_{j}^{\beta}=U_{j}^{\beta} U_{i}^{\alpha} & \text { for } \alpha<\beta \text { and } i>j, \text { or } \beta>\alpha \text { and } i<j \tag{7}\\
U_{i}^{\alpha} U_{j}^{\beta}-U_{j}^{\beta} U_{i}^{\alpha}=\left(q-q^{-1}\right) U_{j}^{\alpha} U_{i}^{\beta} \quad \text { for } \alpha<\beta, i<j .
\end{array}
$$

The set of symbols $\mathbf{U}=\left\{U_{i}^{\alpha}\right\}$ satisfying the commutation algebra (7) is called a quantum matrix of size $m \times n$, while the correspondent polynomial ring $A_{q}(m, n)=$ $\mathbb{C}\left\langle U_{i}^{\alpha}\right\rangle$ is called the coordinate ring on the manifold $M_{q}(m, n)$ of quantum matrices of size $m \times n$.

Suppose that $\mathrm{U}=\left\{U_{i}^{\alpha}\right\} \in M_{q}(m, n)$ and $\mathbf{V}=\left\{V_{A}^{i}\right\} \in M_{q}(n, p)$ (capital Latin indices take values $1, \ldots, p\}$, and consider the $m \times p$ matrix $\mathbf{W}=\left\{W_{A}^{\alpha}\right\}$ given by

$$
\begin{equation*}
W_{A}^{\alpha}=\sum_{i=1}^{n} U_{i}^{\alpha} \otimes V_{A}^{i} . \tag{8}
\end{equation*}
$$

Using commutation relations (7) for $\left\{U_{i}^{\alpha}\right\}$ and $\left\{V_{A}^{i}\right\}$, one obtains, if $\alpha<\beta$,

$$
\begin{aligned}
W_{A}^{\alpha} W_{A}^{\beta}= & \sum_{i, j=1}^{n} U_{i}^{\alpha} U_{j}^{\beta} \otimes V_{A}^{i} V_{A}^{j} \\
= & \sum_{i<j} U_{i}^{\alpha} U_{j}^{\beta} \otimes V_{A}^{i} V_{A}^{j}+\sum_{i=1}^{n} U_{i}^{\alpha} U_{i}^{\beta} \otimes V_{A}^{i} V_{A}^{i}+\sum_{i>j} U_{i}^{\alpha} U_{j}^{\beta} \otimes V_{A}^{i} V_{A}^{j} \\
= & q \sum_{i<j} U_{j}^{\beta} U_{i}^{\alpha} \otimes V_{A}^{j} V_{A}^{i}+\left(q-q^{-1}\right) \sum_{i<j} U_{i}^{\beta} U_{j}^{\alpha} \otimes V_{A}^{i} V_{A}^{j} \\
& +q \sum_{i=1}^{n} U_{i}^{\alpha} U_{i}^{\beta} \otimes V_{A}^{i} V_{A}^{i}+q^{-1} \sum_{i>j} U_{j}^{\beta} U_{i}^{\alpha} \otimes V_{A}^{j} V_{A}^{i}=q W_{A}^{\beta} W_{A}^{\alpha} .
\end{aligned}
$$

Analogously, one finds

$$
\begin{array}{ll}
W_{A}^{\alpha} W_{B}^{\alpha}=q W_{B}^{\alpha} W_{A}^{\alpha} & \text { if } A<B \\
W_{A}^{\alpha} W_{B}^{\beta}=W_{B}^{\beta} W_{A}^{\alpha} & \text { if } \alpha<\beta \text { and } A>B, \text { or } \alpha>\beta \text { and } A<B \\
W_{A}^{\alpha} W_{B}^{\beta}-W_{B}^{\beta} W_{A}^{\alpha}=\left(q-q^{-1}\right) W_{B}^{\alpha} W_{A}^{\beta} \quad \text { if } \alpha<\beta, A<B .
\end{array}
$$

Therefore, we conclude that the matrix $\mathbf{W}=\mathbf{U} \circ \mathbf{V}$, where \circ denotes the matrix multiplication (8), is a quantum matrix of size $m \times p$.

This important property of multiplicativity of non-square quantum matrices may be restated in the spirit of Hopf algebras as follows: for any natural numbers m, n and p there exist algebra morphisms

$$
\Delta_{m, n, p}: A_{q}(m, p) \rightarrow A_{q}(m, n) \otimes A_{q}(n, p)
$$

such that

$$
\Delta_{m, n, p}\left(W_{A}^{\alpha}\right)=\sum_{i=1}^{n} U_{i}^{\alpha} \otimes V_{A}^{i}
$$

where $\left\{W_{A}^{\alpha}\right\},\left\{U_{i}^{\alpha}\right\}$ and $\left\{V_{A}^{i}\right\}$ are canonical generators of coordinate rings $A_{q}(m, p)$, $A_{q}(m, n)$ and $A_{q}(n, p)$ respectively

Moreover, morphisms $\Delta_{m, n, p}$ and defined earlier morphisms $\delta_{m, n}$ and $\delta_{n, p}$ are related to each other in such a way that one has, for any m, n and p, a commutative diagram

$$
\begin{gathered}
A_{q}^{m \mid 0} \xrightarrow{\delta_{m, n}} A_{q}(m, p) \otimes A_{q}^{p \mid 0} \\
\delta_{m, n} \downarrow \Delta_{m, n, r^{\prime} \otimes i d} \\
A_{q}(m, n) \otimes A_{q}^{n \mid 0} \xrightarrow{i d \otimes \delta_{n, p}} A_{q}(m, n) \otimes A_{q}(n, p) \otimes A_{q}^{p \mid 0} .
\end{gathered}
$$

There is also an analogous diagram for the family of morphisms $\tilde{\delta}_{m, n}$.
In the particular case $m=n=p$ the comultiplication $\Delta_{m, n, p}$ coincides precisely with the comultiplication Δ which enters the definition of the quantum group [1-5].

Let $\mathbf{U}=\left\{U_{i}^{\alpha}\right\}$ be a quantum matrix of size $m \times n$ (with $m<n$) and $\mathbf{V}=\left\{V_{\alpha}^{i}\right\}$ a quantum matrix of size $n \times m$, so that the quantum matrix $\mathbf{W}=\mathbf{U} \circ \mathbf{V}$ is of size $n \times n$, and we may consider its quantum determinant $\operatorname{Det}_{q} \mathbf{W}$. Our task now is to express Det ${ }_{q} \mathbf{W}$ in terms of constituent quantum matrices \mathbf{U} and \mathbf{V}.

Fix any ordered set $1 \leqslant i_{1}<i_{2}<\ldots<i_{m} \leqslant n$ of m natural numbers i_{1}, \ldots, i_{m} and define the correspondent q-minor of the m th order of \mathbf{U} by

$$
\begin{equation*}
\mathbf{U}_{q}\left(i_{1} \ldots i_{m}\right)=\sum_{\sigma 匹 S_{m}}(-q)^{I(\sigma)} U_{i_{1}}^{\sigma(1)} \ldots U_{i_{m}}^{\sigma(m)} \tag{9}
\end{equation*}
$$

and the q-minor of the m th order of \mathbf{V} by

$$
\begin{equation*}
V_{q}\left(i_{1} \ldots i_{m}\right)=\sum_{\sigma \in S_{m}}(-q)^{I(\sigma)} V_{\sigma(1)}^{i_{1}} \ldots V_{\sigma(m)}^{i_{m}} \tag{10}
\end{equation*}
$$

By definition (2),

$$
\begin{align*}
\operatorname{Det}_{q}(\mathbf{W}) & =\sum_{\sigma \in S_{m}}(-q)^{I(\sigma)} W_{1}^{\sigma(1)} \ldots W_{n}^{\sigma(n)} \\
& =\sum_{\sigma \in S_{m}}(-q)^{I(\sigma)} U_{j_{4}}^{\sigma(1)} \ldots U_{j_{n}}^{\sigma(n)} \otimes V_{1}^{j_{1}} \ldots V_{n}^{j_{n}} . \tag{11}
\end{align*}
$$

Terms in the sum (11) which have two or more indices j_{1}, \ldots, j_{m} coinciding, equal to zero. Thus we should consider only those $n!/(n-m)$! summands whose indices j_{1}, \ldots, j_{n} are pairwise distinct. Then the sum (11) may be represented as a union of $\binom{n}{m}$ sums, each having m ! summands differing from each other only by a permutation of a fixed set of indices $\left\{j_{1}, \ldots, j_{m}\right\}$ with $j_{1}<\ldots<j_{m}$.

Let us consider one of such sums,

$$
G\left(j_{1} \ldots j_{m}\right) \equiv \sum_{\sigma \in S_{m}} \sum_{\sigma^{\prime} \in S_{m}^{\prime}}(-q)^{l(\sigma)} U_{\sigma}^{\sigma\left(j_{1}\right)} \ldots U_{\sigma^{\prime}\left(j_{m}\right)}^{\sigma(m)} \otimes V_{1}^{\sigma\left(j_{1}\right)} \ldots V_{m}^{\sigma^{\prime}\left(j_{m}\right)}
$$

where S_{m}^{\prime} is the permutation group of the set $\left\{j_{1}, \ldots, j_{m}\right\}$. By (6), one has

$$
\begin{aligned}
G\left(j_{1} \ldots j_{m}\right) & =\sum_{\sigma \in S_{m}^{\prime}} U_{q}\left(j_{1} \ldots j_{m}\right)^{l\left[\sigma^{\prime}\left(j_{1}\right) \ldots \sigma^{\prime}\left(j_{m}\right)\right]} \otimes V_{1}^{\sigma^{\prime}\left(j_{1}\right)} \ldots V_{m}^{\sigma^{\prime}\left(j_{m}\right)} \\
& =U_{q}\left(j_{1} \ldots j_{m}\right) \otimes V_{q}\left(j_{1} \ldots j_{m}\right) .
\end{aligned}
$$

Therefore we conclude that

$$
\operatorname{Det}_{q}(\mathbf{U} \circ \mathbf{V})=\sum_{j_{1}<\ldots<j_{m}} U_{q}\left(j_{1} \ldots j_{m}\right) \otimes V_{q}\left(j_{1} \ldots j_{m}\right)
$$

This is the q-generalization of the classical Binet-Cauchy formula [6]. It can be readily generalized as follows.

Let $\mathrm{U}=\left\{U_{i}^{\alpha}\right\}$ be a quantum matrix of size $m \times n$ and $\mathrm{V}=\left\{V_{A}^{i}\right\}$ a quantum matrix of size $m \times p$ so that the quantum matrix $\mathbf{W}=\mathbf{U} \circ \mathbf{V}$ is of size $m \times p$. Define q-minors of the $r t$ th order of U by

$$
U_{q}\binom{i_{1} \ldots i_{r}}{j_{1} \ldots j_{r}}=\operatorname{Det}_{{ }_{q}}\left\{U_{i_{r},{ }^{\prime}}^{\alpha}, 1 \leqslant s, t \leqslant m\right\}
$$

and similarly for q-minors of \mathbf{V} and \mathbf{W}. Then

$$
W\binom{i_{1} \ldots i_{r}}{k_{1} \ldots k_{r}}=\sum_{j_{1}<\ldots<j_{r}} U_{q}\binom{i_{1} \ldots i_{r}}{j_{1} \ldots j_{r}} \otimes V_{q}\binom{j_{1} \ldots j_{r}}{k_{1} \ldots k_{r}}
$$

In the limit $q \rightarrow 1$ the latter formula also reduces to the well known classical result [6].

References

[1] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1987 Alg. Anal. 1178
[2] Drinfeld V G 1986 Proc. In. Congr. Math., Berkley vol 1 pp 798-820
[3] Jimbo M 1986 Lett. Math. Phys. 11 247-52
[4] Woronowicz S L 1987 Commun. Math. Phys. 111 613-65
[5] Manin Yu I 1987 Ann. Inst. Fourier 37 191-205
[6] Horn R A and Johnson C R 1986 Matrix Analysis (Cambridge: Cambridge University Press)

